教科·領域【 数学 】 科目【 数学Ⅱ 】

|--|

1 学習の到達目標と教材等

学習の到達目標

方程式,図形と方程式,いろいろな関数の考えについて理解し,基礎的な知識の習得と技能の習熟を図り,それらを的確に活用する能力を伸ばすとともに,数学的な見方や考え方のよさを認識できるようにする。

2 使用する主な教材等

使用教科書	東京書籍「新 数学Ⅱ」	副教材等	ニューファースト 新数学Ⅱ (東京書籍) 数学 基本ワーク (増進堂)
-------	-------------	------	--

3 学習計画及び評価方法等

3)4					備考	考士
学			н	W TEL - 1 > .	1学習活動の特	查
期	学習内容		月	学習のねらい	記事項	範
					2副教材の使用	囲
					など	
	1章	方程式・式と証明				
	1節	整式・分数式の計算	4	・3次式の乗法公式及び因数分解を学習する。ま	問題集は,定期考査	
	1	3次の乗法公式と因		た, 商にあたる分数式の約分と通分, 四則演算を学	前の復習問題および	
		数分解		<i>క</i> °.	長期休業中の課題と	
	2	二項定理			して使用する	
	4	分数式とその計算				
	復習問題					
						_
1	2節	2次方程式		・虚数単位を導入し、数を実数から複素数に拡大す		学
学	1	複素数	5	ることに興味を持ち、従来解けなかった2次方程		期
期	2	2次方程式		式が解けること,および複素数の演算を理解する。		中
	3	解と係数の関係		また,判別式の扱いに慣れ,その有用さに気づく。		間
	復習問題			・2次方程式の係数と解の間に成り立つ関係を興		
				味を持って調べ、2次方程式への理解を深める。		
	3節	高次方程式		・簡単な整式の除法を理解し、剰余の定理や因数定		
	1	整式の除法		理の扱いを学び、これらを3次4次の方程式の解		
	2	因数定理		法に応用できることを学ぶ。		
	3	高次方程式		・因数定理を利用して高次方程式を解くこと,およ		
	復習問題			び因数分解(数学 I)を利用して方程式を解くこと		
				を学ぶ。		

	2章	図形と方程式		・座標を利用して数直線上の2点間の距離や内分・	
	1 節	座標と直線の方程式	6	外分の意味を理解し,計算できるようにする。	
	1	直線上の点の座標		・座標平面の約束,およびその上の2点について,距	
1	2	平面上の点の座標		離, 内分・外分点の座標の求め方, 内分の代表的な応用と	
学	3	直線の方程式		して三角形の重心の座標に興味を持つ。	
期	4	2直線の関係		・1 点と傾き, あるいは 2 点が与えられたときの直	_
	復習問題			線の方程式の求め方を学び、応用できる。	学
				・2 直線の交点が連立方程式で求められること。平	期
				行・垂直がどんな関係式になるかを学び, 応用	期
				できる。	末
	2節	円の方程式	7	・円の定義をもとに方程式を立て,円の方程式の一	
	1	円の方程式		般形から中心と半径を求められるようにする	
	2	円と直線の関係		・円と直線の位置関係が、2次方程式の判別式の	
	復習	習問題		符号で決まることを理解する。	
	3章	三角関数	9	・360°以上および負の角度について学び,回転量	
	1 節	三角関数		としての角度の扱いに興味を持つ。	
2	1	一般角		・180°以上および負の角度に対する三角比を求め	
学	2	三角関数		 られるようにし, 関数としてとらえられるよう	
期	3	三角関数の相互関係		にする。	
	4	三角関数のグラフ		│ ・一般の角度に対しても, 1 年で学んだ相互関係が	
	5	三角関数の性質		 成り立つことを確認する。	学
		習問題		 ・いくつかの基本公式を定義から導き,正弦と余弦	期
				の関係をより深く知る。	中
	2節	加法定理		 ・加法定理の意味とその使い方,および応用の広	間
	1	加法定理		さを学ぶ。	
	2	加法定理の応用		 ・弧度法について学び,扇形の弧の長さや面積の	
	3	孤度法		 表し方などについて興味を持つ。	
	復習	習問題			
	,, ,				
	4章	指数関数と対数関数	10	 ・指数を整数に拡張することに興味を持ち,指数	
	1節	指数関数		 法則の計算ができるようになる。	
	1	指数の拡張		 ・分数を指数とする計算ができ, 累乗根として表す	
	2	累乗根		ことができることを理解する。	
		指数関数のグラフ			
		習問題			
	2節	対数関数	11	・対数の考えと定義を学び、簡単な対数の値が求め	
	1	対数		ることができる。	
	2	対数の性質		・指数法則に関連して対数の性質に気づく。	
	3	対数関数のグラフ		・常用対数が利用できるようにする。	
	4	常用対数			
	復習	習問題			
			1		

	5章	微分と積分		・平均変化率を物理的な例から導入し,グラフ上の		
2	1節	微分係数と導関数	12	2点を通る直線の傾きと対応することを気づく。		$\stackrel{-}{\rightarrow}$
学	1	平均変化率		・平均変化率の極限を考えることで, 微分係数を求		学
期	2	微分係数		めることができる。また、接点の座標と接線の		期
	3	導関数		傾きにより,接線が求めることができる。		期
	4	接線		・導関数の符号を利用して,関数の増減がわかり,		末
	復習	習問題		グラフがかけるようになると同時に,その有用		
				性を認識する。		
	2節	導関数の応用	1	・増加減少の境目としての関数の極大・極小の意		
	1	関数の増加・減少		味と求め方を学ぶことで,グラフの理解を深め,		
	2	関数の極大・極小		最大・最小への準備とする。		
	3	- 1000000000000000000000000000000000000		・グラフから最大・最小の問題が簡単に解けるこ		
3	復習	習問題		とを理解し,微分の重要さを納得する。		
学	3節	積分		・微分の逆演算としての不定積分を理解し、様々な		
期	1	不定積分	2	不定積分の計算ができる。		学
	2	定積分		・定積分の公式を導入し,簡単な計算ができる。		年
	3	面積		・定積分の応用として,面積が簡単に求められるこ		末
		習問題		とを理解し,面積計算を通して,積分の概念の有		考
	IX F			効性を知る。		査
	数Ⅰ。	・Ⅱの復習				
	基本計算演習		3		教科書や副教材	
					を使って復習す	
					る。	
			l			

評価の観点・方法

・評価の観点は

「数学への関心・意欲・態度」、「数学的な見方や考え方」、「数学的な表現・処理」、「知識・理解」の4項目です。

- ・評点は、定期考査、課題考査等と平常点(課題やノート提出及び出席状況、授業態度)により、学期ごとに出します。
- ・1,2,3学期の成績を総合して、年間の学習状況の評価をします。

	1	・課題考査	(4月上旬)	「春休み課題」から
	学	・中間考査	(5月中旬)	「整式・分数式の計算・2次方程式・高次方程式」
	期	・期末考査	(7月上旬)	「座標と直線の方程式・円の方程式」
		・夏休み課題	Ī	「ニューファースト 新数学Ⅱ」他
考查範囲(予定)	2	・課題考査	(9月上旬)	「夏休み課題」から
	学	• 中間考査	(10月中旬)	「三角関数・加法定理」
	期	・期末考査	(11月下旬)	「指数関数・対数関数・微分係数と導関数」
課題・提出物等		・冬休み課題	Ī	「ニューファースト 新数学Ⅱ」他
	3	・課題考査	(1月上旬)	「冬休み課題」から
	学	・学年末考査	(2月下旬)	「導関数の応用・積分の考え」
	期	・春休み課題		「基本ワーク(増進堂)」