数学(数学 I) 学習指導案

学 校 名 鹿児島県立加治木高等学校 授 業 者 勇 真人 日 時 令和3年10月20日(水)2限指導学級 1年3組40名

1. 単元名 数学 I 第4章 図形と計量【課題学習】 使用教材 改訂版 高等学校 数学 I (数研出版)

2. 教材観

図形と計量は、測量や GPS など、意外と身近なところで利用している分野である。また、直接的に数学Ⅱの 三角関数だけでなく、入試では数学Aの平面図形の分野との融合問題も頻出であることから、重要な単元であ る。今回の授業の内容は、三角関数の加法定理の先取りであるが、既習の内容で導くことができるものであり、 事前に紹介することで今後の学習への繋がりとしたい。

3. 生徒観

真面目な生徒が多く、静かに授業に取り組んでいる。積極的に発言することは少ないが、指名されたときには、きちんと答えることができる。事前アンケートでは「数学の授業が好き」と答えた生徒が3割程度いたが、「数学が得意」を答えた生徒は1割もおらず、逆に、「苦手」と答えた生徒が3割以上いた。しかし、ほぼ全員が「数学ができるようになりたい」と回答していることから、前向きな気持ちが感じられる。また、「数学を勉強することで、どのような力が身につくと思いますか。」に対しての回答で「思考力」が最も多く、授業でも生徒がいろいろ考え、それを還元する機会も工夫して作る必要があると考えている。

4. 単元の目標(評価基準)

知識・技能	思考・判断・表現	主体的に学習に取り組む態度
・有名角とその倍数の三角比を	・正弦定理や余弦定理を用いて、	・今まで学習してきた定理で、
理解している。	有名角以外の角の三角比を求	15°, 75°, 105°の正弦の値
・正弦定理を用いて,正弦の値を	めることができる。	を求めることに取り組む意欲
求めることができる。	・辺の長さを計算しやすい数で	がある。
	設定することができる。	
	・面積の公式からでも求めるこ	
	とができる。	

5. 本時の目標(本時 22/22)

・ $\sin 105^{\circ}$, $\sin 15^{\circ}$ の値を求めることができる。

【田本、如

・正弦の加法定理 (α, β) は鋭角)を導くことができる。

【思考・判断・表現】

【知識・技能】

【主体的に学習に取り組む態度】

6. 本時の実際

過程	時間	学習活動および指導過程	指導上の留意点および評価の観点		
	3分	小テスト (三角比の値)	・有名角の三角比を正しく理解でき		
			ているか。【知】		
導入	10分	・三角定規の組合せで 15°, 75°, 105°を	・既習事項の確認。		
		作ってみる。	三角比の表を用いて,三角比の値		
		・sin 75°の値の求め方を確認する。	を正しく求められるか。【知】		
		正弦を含む公式を確認する。	正弦定理・面積の公式を正しく理		
		正弦定理,面積の公式など	解できているか。【知】		
展開I	15分	・sin 105°, sin 15°の値を求める。	・三角比は,直角三角形の大きさに関		
		クラス全体で求めやすい辺の長さを決め	係なく一定になることから、どこ		
		る。	の長さを1とすることで、計算が		
		→各自で求める。	容易になるのか考えさせる。【思】		
		→近くの人たちと共有する。	・三角形の大きさが変化しても,三角		
		→答え合わせ。(タブレットで撮影し, 投影	比の値は変化しないことを理解し		
		する。)	ているか。【知】		
			計算しやすい辺の長さにできたか。		
			【思】		
展開Ⅱ	20分	グループ活動	・6人程度のグループをつくり、考え		
		$\cdot \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \dot{\varepsilon}$	させる。【主】		
		導く。	・有名角の三角比が利用できないの		
		$\cdot \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \dot{\varepsilon}$	で三角比の定義を用いて,三角形		
		導く。	の辺の長さを表すことができる		
		共通の辺ADの長さを1 にして,他の辺の	か。【知】【思】		
		長さを $lpha$, eta を用いて表す。	・今回の授業で扱う証明は直角三角		
			形を用いているので、 $lpha$, eta が鋭角		
			に限ることを伝える。		
まとめ	2分	・面積の公式でも求めることができる。	・解答例をプロジェクターで示す。生		
		・余弦定理を用いることで、余弦の加法定理	徒の解答の中で出てきたときはそ		
		$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta \tilde{\varepsilon}$	れを紹介する。		
		導くことができることを示す。			
		・ α , β が鋭角以外のときの求め方は数学 II			
		の三角関数の単元で学ぶことを伝える。			

7. 本時の評価

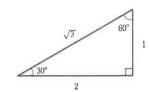
- ・ $\sin 105^{\circ}$, $\sin 15^{\circ}$ の値を求めることができる。 【知識・技能】
- ・正弦の加法定理 (α, β) は鋭角)を導くことができる。

【思考・判断・表現】

【主体的に学習に取り組む姿勢】

小テストの答え合わせ

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin θ	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	×	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0



正弦定理

$$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

THE PROPERTY OF THE PARTY OF TH

$$S = \frac{1}{2}bc\sin A$$

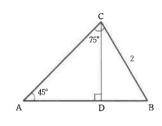
$$S = \frac{1}{2} ca \sin B$$

$$S = \frac{1}{2}ab\sin C$$

2 molecules of the manipulation.

【復習】 P.158 章末問題A 4

△ABCにおいて、 BC= 2 、 ∠BAC=45°、 ∠ACB=75° である、辺AB の長さを求め、 sin75° の値を求めよ。

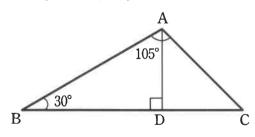


解答 ∠ABC=180°- (45°+75°) =60° であるから、△BCD の直角三角形により BD=1, CD= $\sqrt{3}$ また、△ADCの直角三角形より $AD = \sqrt{3}$. $(AD = \sqrt{6})$ であるから、 $AB = \sqrt{3} + 1$ である。 したがって、 \triangle ABCに正弦定理を用いて、

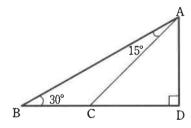
 $\frac{\sqrt{3}+1}{\sin 75^{\circ}} = \frac{2}{\sin 45^{\circ}}$ $2\sin 75^{\circ} = (\sqrt{3}+1)\frac{\sqrt{2}}{2}$ $\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$

【演習1】

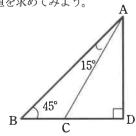
(1) sin 105°の値を求めてみよう。



(2) sin15°の値を求めてみよう。

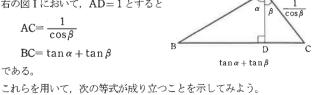


(2) sin15°の値を求めてみよう。



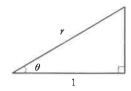
【演習2】 右の図Iにおいて、AD=1とすると

である。

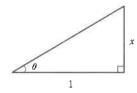


[図I]

 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ (α , β は鋭角)



$$\cos\theta = \frac{1}{r} \ \ \sharp \ \ \gamma = \frac{1}{\cos\theta}$$



$$\tan\theta = \frac{x}{1} \ \ \sharp \ \ \emptyset \quad \ x = \tan\theta$$

(証明)
$$\frac{BC}{\sin(\alpha+\beta)} = \frac{AC}{\sin \angle ABD}$$

$$AC\sin(\alpha+\beta) = BC\sin \angle ABD$$

$$\sin(\alpha+\beta) = BC\sin(90^{\circ} - \alpha) \times \frac{1}{AC}$$

$$= (\tan \alpha + \tan \beta) \times \cos \alpha \times \cos \beta$$

$$= \left(\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}\right) \times \cos \alpha \cos \beta$$

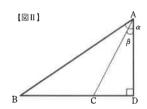
$$= \frac{\sin \alpha \cos \beta + \sin \beta \cos \alpha}{\cos \alpha \cos \beta} \times \cos \alpha \cos \beta$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

さらに、次の等式が成り立つことを示してみよう。 $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ (α , β は鋭角)

[証明] 図Ⅱにおいて、AD=1とすると、先の証明と同様に

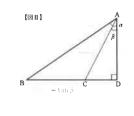
$$AC = \frac{1}{\cos \beta}$$
, $BC = \tan \alpha - \tan \beta$



さらに、次の等式が成り立つことを示してみよう。 (α βは鋭角) $\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$

[証明] 図Ⅱにおいて、AD=1とすると、先の証明と同様に $AC = \frac{1}{\cos \beta}, \quad BC = \tan \alpha - \tan \beta$ よって、△ABC に正弦定理を用いて $\frac{BC}{\sin(\alpha - \beta)} = \frac{AC}{\sin \angle ABC}$

> $\sin(\alpha - \beta) = (\tan \alpha - \tan \beta) \times \sin(90^\circ - \alpha) \times \frac{1}{AC}$ $= \left(\frac{\sin\alpha}{\cos\alpha} - \frac{\sin\beta}{\cos\beta}\right) \times \cos\alpha \times \cos\beta$ $= \frac{\sin \alpha \cos \beta - \sin \beta \cos \alpha}{\cos \alpha \cos \beta} \times \cos \alpha \cos \beta$ $= \sin \alpha \cos \beta - \cos \alpha \sin \beta$



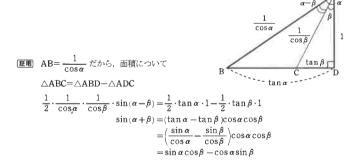
[図Ⅱ]

証明 $AB = \frac{1}{\cos \alpha}$ だから、面積について

$$AB = \frac{1}{\cos \alpha}$$
 だから、面積について $ABC = \triangle ABD + \triangle ADC$ $ABC = \triangle ABD + \triangle ADC$

[図1]

$$\begin{split} \frac{1}{2} \cdot \frac{1}{\cos\alpha} \cdot \frac{1}{\cos\beta} \cdot \sin(\alpha + \beta) &= \frac{1}{2} \cdot \tan\alpha \cdot 1 + \frac{1}{2} \cdot \tan\beta \cdot 1 \\ \sin(\alpha + \beta) &= (\tan\alpha + \tan\beta) \cos\alpha \cos\beta \\ &= \left(\frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta}\right) \cos\alpha \cos\beta \\ &= \sin\alpha \cos\beta + \cos\alpha \sin\beta \end{split}$$



下の図Iにおいて、AD=1とすると $AC = \frac{1}{\cos \beta}$, $AB = \frac{1}{\cos \beta}$ $BC = \tan \alpha + \tan \beta$ である。これらを用いて、次の等式が成り立つことを示す。 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ (α , β は鋭角)

